Exam: Active Galactic Nuclei

Date: Nov 5 2008 Time: 9:00–12:00

Location: Kapteyn Room

Please write your name and student number on all exam sheets and hand all material in after the exam. Write clearly and structured.

- 1. Describe in short [15]¹:
 - Big Blue Bump
 - Ly- α forest
 - The Gunn-Peterson effect
 - Reverberation mapping
 - Baldwin-Phillips-Terlevich diagram
- 2. (a) Give the defining characteristics, including differences, for Seyferts and quasars (QSOs) of types 1 and 2. [10]
 - (b) Describe possible unification schemes between these Seyfert galaxy types 1 & 2, also and between them and QSOs. In this context, mention three possible important causes for the differences that we see between AGN types. [10]
- 3. (a) Draw and describe the general structure of a giant radio galaxy, indicating each of the components by name. [5]
 - (b) What is the physical cause of radiation loss by electrons and what is synchrotron self-absorption? What is the effect of these processes on the shape of the radio spectrum? [5]
 - (c) What causes Polarisation of synchrotron emission in a radio galaxy. [5]
 - (d) How does the effect of Faraday rotation depend on frequency? [5]
- 4. Black holes in AGN grow through accretion of gaseous material. In the following question you will examine whether $10^9\,\mathrm{M}_\odot$ BHs can exist at a redshifts of z>6, as found in the SDSS.

¹Points for each question.

- (a) Describe what is meant by the Eddington luminosity. The equation for the Eddington luminosity is given by $L_{\rm edd}=4\pi GMm_{\rm p}c/\sigma_{\rm e}$. [5]
- (b) Assume now that the Thomson cross-section is $\sigma_e = 6.65 \times 10^{-29} \,\mathrm{m}^2$, the proton mass is $m_p = 1.67 \times 10^{-27} \,\mathrm{kg}$, $G = 6.67 \times 10^{-11} \,\mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2}$, the speed of light is $c = 3 \times 10^8 \,\mathrm{m/s}$ and $M_\odot = 2 \times 10^{30} \,\mathrm{kg}$.

Given an efficiency η for turning accreted mass into radiation, write the Eddington luminosity as an accretion rate dM/dt and as function of the mass M of the black hole. Express the equation in units of solar mass (per year). [10]

- (c) Note that the solution of (b) is a simple linear differential equation. Solve the equation with the boundary condition that the initial mass of the black hole is $100\,\mathrm{M}_\odot$ at t=0. [10]
- (d) How long does it take for the BH to grow from $100 \,\mathrm{M}_{\odot}$ to $10^9 \,\mathrm{M}_{\odot}$? Assuming that the BH has 1 Gyr to grow before z=6, is likely that these BHs exist at all at these redshifts under the assumption they grow through standard gas accretion limited by the Eddington luminosity? If so, what efficiency η is needed and what could this say about the spin of the BH? [10]
- (e) If AGNs accrete over the entire age of the Universe (13.6 Gyr) at the Eddington limit, what mass would the BH have at present if it started of at $100\,\mathrm{M}_\odot$? If SMBH are limited to $< 10^{10}\,\mathrm{M}_\odot$ what is the maximum amount of time the AGN can radiate at the Eddington luminosity? [10]